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The elastic equilibrium of a half-space, containing a circular crack, situ-
ated in a plane parallel to the boundary (Fig.l) 1s 1investigated. In the
case of an axlsymmetric load the problem 1is reduced to a system of dual inte-
gral equations, and then to a system of regular Fredholm equations. Some
numerical results are c¢btained which are related to the stress concentration
at the axial tension.

1. Formulation of problem and its reduction to a system of dual integral
equations. We represent elastic displacements in the axisymmetric case by
two harmonic functions of Papkovich-Neuber, ¢ and F , in the following
form (cf. for example [1]):

a9 ar oF o
Wu, =— 5> —z25-, 26u,=@3—4F—-0—z—3-, =5~ (11
In order to formulate the boundary conditlons for the posed problem, we
express by means of the functions introduced, the normal ¢, znd tangential

1., Stresses
oF o0 9% F 0 oF
€ =20-V G G =t g A=W P -0 | (12)

Let us divide the body in two domains (Fig.1): (1) layer — h < 2 < O and
2) half-space O < z < « and give functlons =

z! and ¢ 1in these domalns the index 1 and 2. If we
(2) assume that the stresses on the surface of the
| crack and on the boundary of the body are specified,
QLQ _:;_ the boundary conditions may be written in the form
| -
(1 * | S iz:—h = 3o (1), Yzlz=h = To (r)
6, |;mo=01(r), S |.qo=02() (r<a) (1.3)
Flg. 1 Tz | zmmo = T (1), Trz| 2=t} = T2 (7)

In addition, to pass through plane 2z = 0 at , > g , the values of the
displacements and stress should be continuous. Then the indilcated conditions
are expressed by means of the functions F,, ¢, F,, ¢, In the followlng way:
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oF oD 8°F,
[2 (1 —_ ‘V) azl _— azl + h 32 ] o = Gp (r) (1.4)
r
[(1 — W) Fy— @+ h Qfl_] = 8, (r) = S %, (r) dr (1.5)
0z z=—h &

aF a0 aFy 0Dy 0 (r>a)  (16)
[2 (1= 8zl - ¢9zl ]z:() - [2 A—=V7%" % ]z;o —{6(")_51(f)—62(r)(r§a)
[(1 — 2v) Fy — @3] ,_, — [(1 — 2v) F2 — ®al ,_, ={ g ((r; >(“r)<a) (1.7)
[2 (4 —v) _%I«‘zl_ _ 6;121 ]zz_o = o1 (r)s (A — 2v) F1 — @u],__ =8:i(r)+ch (r<a)
r r (1.8)
5 ()= { [mgr)—(riar, 1 = uner
’ aF, oF, |
Fil,o="Filicp 35 |im0™ 02 |1me (F>9) (1-9)
C 90 © 90
§ az‘ o rdr =OS az’ 2=0r dr (1.10)

The relations (1.9), (1.10) guarantee the continuity of the displacements
on the plane z =0 at r > g (cf. (2], page 41), and (1.10) allows, in
addition, the determination of the constant o .

Therefore, the formulated problem 1s reduced to the determination of four
functions p,, ®,, Fp, ., that are harmonic in the region — h < 2 < 0 and
0< z < » , respectively, and satisfying conditions (1.4), (2.10), and also
the requirements at infinity, which ensure proper behavior of displacements
and stresses,

The unknown functions are sought in the form of the following integral
equations:

o oo
Fi = § [Aconh (b + 2) + B amnd (htaldodn) 2o = (B2 75 r) ab
P sinhAh A
= i , @y =\ Fe 2% J, (Ar) dA
@ §wMuw+n+Dmxw+mhmqmm 2 §e o ) &k
Conditions (1.4) and (1.5) allow one to obtain the two relations
D=2(1—v)B+4pd—35° C=(1—2v)A+4 pB — pnS§y° (1.12)
Here
2] [0
Gy = S 8o () Jo (Ar) rdr, Sy = % S So(r) Jo (Ar) rdr,  po=AR  (1.13)
0 0
Analogously, from (1.6) and (1.7) we find
2(1—v) (A4 Beotp)—(C+ Doothp) —F 4 2(1 — %) E = ¢°
(1 — 2v) (A coth b & B) — (Cootn p +D) + F — (1 — 2v) E=ps°
0 a
s° = S 6 (r) Jo (Ar) rdr, S§° = _}11_ S S (r) Jo (Ar) rdr (1.14)

0 n
Relations (1.12) and (1.1%) allow one to express all desired values by
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means of two functions oi‘ a parameter A , in which case 1t 1s convenlent to
use the followlng:

M=A + Botp + I, N = Acothp + B — E (1.15)

Then, after some transformations, the remalning conditions {1.8) and (1.9)
are reduced to the following system of dual integral equatlions:

S MJ, (Ar) hdd = O, S NJo (hr) dh = 0 (r>a) (1.16)
[H] 0
[.:’.;’__ — (_;_ I m)e*m N — pre-2y ]Jo (Ar) A = f1 (r) r<a) (1.47)

M 1
[._ 5+ (_2“,_,9 + pz) e M pze N]J0 (Ar)dh = fa(r) (r<a)

Here (1.18)

Permif cows§

fo= o= ({6 + ) LEEZBORE 4 (comp — 1) [0+ ) B -+ WISe] | 1, () @
0

0
fo = Sy ~-cosh— g {(E tpflo bt i o 1) [(1 — 1) Sy4-5] } Jo (br) dh
: 14 com pb
We note also that relation (1.10) may not be represented in the form
o .
S M (M) Jx (ha) @A = O (1.19)

4]

2. Reduotion of dual equations to Fredholm integral equations. Ir we
introduce new unknown functions ¢ and ¢ by the relations

a a
M) = hS P {t) cos Atdt, N@Q) = —%R @ () {cos At — cos Aa} di (2.1}
then with the aig of Formula [3] '
OSOJ(, (Ar) sin AMdh =0 ot r) (2.2)
0
we can establish that Equations (1.16) are satisfied identically.

Further, if we substitute {2.1) 1n {1.17), we find the following equa~
tions at "< g ¢

S () dt S Jy (A7) (cos AL — cos ha) dh — S () dt ‘ hy (A) {cos AL —
0 1 ]
— cos Aa) Jo (Ar) di — S P () dt S g1 (M) cos Mo (Ar) dh = R (r)  (2.3)
0 0

L S P (t) dt SJ° {Ar) cos Atd: + & P (1) dt S g3 (A) cos AtTy (Ar) dA -
0 0

-+

Ctr s o

@ () dt S ha (M) (cos At — cos ha) Jo (Ar) dA = fa(r) 2.4y
(1]
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Here
hi=(fa4 p+ W) e, a=pe® h=p,  g= (T2 —p + plle™ (2.5)
With the aid of Formula [3]

o0

Ty (Ar) cos MdA = (r<t) (2.6)
§ 0( {(r._tz) 2 (r>t)
e
Jo (ar) = —32? S cos {Ar sin 8} d6 2.7)

4

relations (2.3) and (2.4) may be reduced to Schldmileh's integral equations
s/am a

S{(p(rsm(i)-—--—zmgcp(t)[Hl (t + rsin0) + Hy (t —rsin8) — Hy(a + r sin 6) —
0 0

w Hy {@ — r sin 8)] dt — %K P (2) [Gy { -+ r sin 8) + Gy (¢ — r sin 6)] dt}de = 2/(r)
¢
(2.8)
thm 9 a 9 a
S{i{)(r sinﬁ)-—?gtp(t) [Gs (¢ + r sin 8) + G (¢ — r sin 9)]dt~—--?gtp(t)[Hg t-4
b :

0
-} rsin 0) 4+ Hg (t— r sin 0) — Hs (a 4 r sin0) — Hz (a — r sin 6)] dt} d0=—2fa(r) (2.9}

where " ©
Hyg (z) = S hig(Aycosdadrh, . Gig(z) = S gi,2 (A) cos Azd}, (2.10)
After calculationowe obtain ’
H = 4hs(%f,"_{_——:a%, 6, = gre 5% ('_,:hf‘f ::’;l‘ = @.14)
kg G2 g

Solving Equations (2.8) and (2.9}, we arrive at a system of Fredholm inte~-
gral equations

2 a a
2@ — oW K hat—= 9 L 0 ar =
0 (1]
Yam
4
= [:fl ©) += S A (x sin 6) dO] 0Lz a) (2.12)

0

a a
2
P (@) — -;;S ¥ () La (=, t)dt-—-%&q)(t}]{g(x, t)dt =
0 4]

am

4
-—— [f, 0 4= S fa’ (z sin 6) dﬂ] (0 Lz L a) (2.13)
0
the kernels of which are gilven by Equations
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Ky(z, ) = H (¢t +2) + Hy (t — 2) — H, (a + 2) — H, (2 — 2)
Li(x,)=GCG (t+2z)+ G, (t — z) (2.1%)
K@ t) = Hy (t + 2) + Hy (t — 2) — Hy (a + o) — Hy (@ — 2)
Ly(z, ) = Gy (t + ) + Gy (t — x)
Condition (1.19) may be reduced to the form
a

S P (2)dt =0 (2.15)
4

Thus, the solution to the problem set 1s gilven by Equatlons (1.11),{(1.12),
(1.14),{1.15),(2.1), (2.12), (2.13).

3. Some numerioal results., We now turn to the special case, where the
boundary of the half-space 1s free of stress, and to the edges of the crack

are applied a uniform normal stress of intensity g . At the same time
Og=To=T =T, =0, 0,=0,=—gq, from which
h(r) = —q fa(r) = ¢ (3.1)
Introducing the dimensionless variables
. z/a=E, tjla=~7 (3.2)
Y@ ==l ® +eau®L b =— — o @) + cos @)]

we reduce the problem to the solutlon of two systems of Fredholm integral
equatlons

1 1
X E) =1+ SMI € ¥ xu(r)de+ S N1 (¢, 1) @1 (%) dv
0 ]

: : (3.3)
a@={Mme vo@at( MmeE oume
01 01
1 () = SM1 €& Dmdr+ § Mg e mae
Y 0
1 1
(3.4)
o1 @) =1+ (M€ ) on(v)dr + (a6 npma
o 0
In relations (3.3) and (3.4%) we introduce the notation
83s
M, =T[81 (t+ 8+ 5 t—E -850+ £) — S1(1—8)1,
1233 .
Ny = —— [f(v + §) + Ry (v — §)] (3.5)
Mz=3£i[sz (T+E)+ Se(r—E —S2(1 &) — S22 (1 — B,
3
Ne= Ry (x4 8)+ oz — B
1232 — u2 163¢ — 24322 + u?
S1(w) = gE iy Ro) = ——gmay -6)
432 — ut » 8R4 — 23%u2 + ut
82 () = g Bo ) =—@ge 1p

and put
= h/a (3.7)
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Equation (2.15) zives She foilowing expression for the value o :
1 -1

c:—q(gl(m 3] dr)(s w2 (1) dt) (3.8)
0 0

By means of substitution of the system (3.3), (3.4) by the algebraic sys-
tem, an approxlimate solution in the trapezoldal formula was obtained, where
the interval of integration was partitioned into ten parts. Results of the
calculation for two values of the parameter g8 are shown in the following
table.

B =" B=1

g X, wy X, wy %y Wy Xy g
0 4.49 1.54 0.682 1.81 1.50 u.187 0.462 1.40
0.1 4.37 1.49 0.663 1.80 1.49 0.184 0.457 1.40
0.2 4,07 1.38 0.612 1.77 1.46 0.176 0.440 1.40
0.3 3.61 1.20 0.541 1.73 1.42 0.164 0.412 1.39
0.4 2.95 0.968 0.440 1.70 1.37 0.148 0.375 1.37
0.5 2.2 0.695 0.338 1.65 1.30 0.129 0.329 1.37
0.6 1.46 0.415 0.212 1.60 1.23 0.1U8 0.277 1.34
0.7 0.729 0.133 0.425 1.54 1.16 0.0851 0.220 1.32
0.8 0.0420 | —0.111 | —0.024 1.47 1.08 0.0623 0.160 1.30
0.9 | —0.463 | —0.323 | —0.439 1.42 1.01 0.0403 0.0997 1.27
1 —0.800 | —0.446 | —0.262 1.36 0.954 0.0199 0.0199 1.25

It 1s important to note that certain characteristics of the stress-defor-
mation state may be expressed immediately by means of functions vy,,, and

w,,2 . In particular, an asymptotic expression for formal stresses in the

plane z =0 as pr - +g 18 a

1
TiVeE—a mg P () dt + O (1) (3.9
0
Referring this quantity to its value Oo” in the limiting case » - »
corresponding to a crack in an unlimited body [4], we find

50=

’

So r2 /s
c—ooo='r+0<?— 1) (3.10)
1 1

1 1
1= Ole (®) 45 — (08 o @) a ) ({ o @) at )‘(OS @)y

[

The values of the coefflcient y , characterizing the degree of increase
of stress concentration connected with the presence of free boundary of the
half-space, turn out to be the following:

T = 2.19 for B = 1/2, Y = 1.27 for B =1
For obtaining the approximate solution to the problem under consideration

for large values of a , the method of expansion in a series of the small
parameter q = g¢/h may be applied.

After performing the corresponding calculations the following expressions
for the basic unknown functions may be obtained:

4 5 21
P = — [t g (1 5 4 0 (@) |

16 5
V@) = — o | o (1 — 38) % + 0 () | (3-12)

The coefficient vy may be calculated by Equatilon
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5 4o i
T=A4 g et — g 0 (o) (3.13)

which for g =% and g =3 gives y = 1.04 and y = 1,02 , respectively;
so that for h/b =~ 2 —~ 3 the presence of a free boundary has practically no
effect on the stress concentration factor.

The method of expansion in a small parameter mey also be applied in the
problem of deformation of an unbounded body weakened by two plane circular
eracks (ef. paper [2]1). 1In this case for the coefficient y we obtain the
following formula:

7:1_-3%—0‘3+ 5f7a5+0(a7) (3.14)

1t obviously shows that there occurs a reduction of the stress concentration
in a comparison with the case of a single crack.

In conclusion we will point out that the method developed in the present
paper may also be applied to the case where the boundary of the half-space
is rigidly clamped. For this, in place of the first two conditions (1.3) we

should assume , N
Yz h = Ul p=0 3.15)

The presence of the latter condition necessitates finding the function ¢
in place of the function ¢ (ef. (1.1)). This somewhat compllicates the
calculations, however the problem, as before, may be reduced to the system
of regular Fredholm equations. One must note that in contrast to the case
of a free boundary or two cracks,for a fixed boundary both the kernel of the
Fredholm equations and the other characteristics (for example the coefficient
¥ eof. {3.10)) turn out to be dependent on Poisson's ratio v . We only
mention here the equation for vy in the form of an expansion in powers of g

w2 4 19 2 -4 44
T=1— 12j;n a? |+ 1;;”5 ad -+ O (a7 (% = 3 — 4v) {3.16)

For vel, g=§ we find y = 0,97 .
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