AXISYMMETRIC PROBLEM IN THE THEORY OF ELASTICITY FOR A HALF-SPACE WEAKENED BY A PLANE CIRCULAR ORACK
 (OSESIMDEMAICBMAIA zADACBA TRORII UPRUCOSTI DLILA POLUPROSTRANSIVA, OSLABLENDOGO PLOBKOI KRUULLOI SHCHEL'IU)

PMM Vol.29, No 6, 1965, pp.1132-1137
Iu.N.KUZ'MIN and Ia.S.UFLIAND
(Ieningrad)
(Received April 12, 1965)

The elastic equilibrium of a half-space, containing a circular crack, situated in a plane parallel to the boundary (Fig.1) is investigated. In the case of an axisymmetric load the problem is reduced to a system of dual integral equations, and then to a system of regular Fredholm equations. Some numerical results are cbtained which are related to the stress concentration at the axial tension.

1. Formulation of problem and its reduction to a motem of dual integral -quetions. We represent elastic displacements in the axisymmetric case by two harmonic functions of Papkovich-Neuber, Φ and F, in the following form (cf. for example [1]):

$$
\begin{equation*}
2 G u_{r}=-\frac{\partial \varphi}{\partial r}-z \frac{\partial \mu}{\partial r}, \quad 2 G u_{z}=(3-4 v) F-\Phi-z \frac{\partial F}{\partial r}, \quad \Phi=\frac{\partial \varphi}{\partial z} \tag{1.1}
\end{equation*}
$$

In order to formulate the boundary conditions for the posed problem, we express by means of the functions introduced, the normal σ_{2} and tangential

$$
\sigma_{z}=2(1-v) \frac{\partial F}{\partial z}-\frac{\partial \Phi}{\partial z}-z \frac{\partial^{2} F}{\partial z^{2}}, \quad \tau_{r z}=\frac{\partial}{\partial r}\left[(1-2 v) F-\Phi-z \frac{\partial F}{\partial z}\right]
$$

Let us divide the body in two domains (Fig.1): (1) layer $-h<z<0$ and (2) half-space $0<z<\infty$ and give functions F

Fig. 1 and Φ in these domains the index 1 and 2 . If we assume that the stresses on the surface of the crack and on the boundary of the body are specified, the boundary conditions may be written in the form

$$
\begin{array}{ll}
\left.\sigma_{z}\right|_{z=-h}=\sigma_{0}(r), & \left.\tau_{r z}\right|_{z=-h}=\tau_{0}(r) \\
\left.\sigma_{z}\right|_{z=-0}=\sigma_{1}(r), & \left.\sigma_{z}\right|_{z=+0}=\sigma_{2}(r) \quad(r<a) \tag{1.3}\\
\left.\tau_{r z}\right|_{z=-0}=\tau_{1}(r), & \left.\tau_{r z}\right|_{z=+0} \mid=\tau_{2}(r)
\end{array}
$$

In addition, to pass through plane $z=0$ at $r>a$, the values of the displacements and stress should be continuous. Then the indicated conditions are expressed by means of the functions $F_{1}, \Phi_{1}, F_{2}, \Phi_{2}$ in the following way:

$$
\begin{align*}
& {\left[2(1-v) \frac{\partial F_{1}}{\partial z}-\frac{\partial \mathrm{M}_{1}}{\partial z}+h \frac{\partial^{2} F_{1}}{\partial z^{2}}\right]_{z=-h}=\sigma_{0}(r)} \tag{1.4}\\
& {\left[(1-2 v) F_{1}-\Phi_{1}+h \frac{\partial F_{1}}{\partial z}\right]_{z=-h}=S_{0}(r)=\int_{\infty}^{r} \tau_{0}(r) d r} \tag{1.5}\\
& {\left[2(1-v) \frac{\partial F_{1}}{\partial z}-\frac{\partial \Phi_{1}}{\partial z}\right]_{z=0}-\left[2(1-v) \frac{\partial F_{2}}{\partial z}-\frac{\partial \Phi_{2}}{\partial z}\right]_{z=0}=\left\{\begin{array}{llr}
0 & (r>a) \\
\sigma(r)-\sigma_{1}(r)-\sigma_{2}(r)(r<a)
\end{array}\right.} \tag{1.6}\\
& {\left[(1-2 v) F_{1}-\Phi_{1}\right]_{z=0}-\left[(1-2 v) F_{2}-\Phi_{2}\right]_{z=0}= \begin{cases}0 & (r>a) \\
S(r) & (r<a)\end{cases} } \tag{1.7}\\
& {\left[2(1-v) \frac{\partial F_{1}}{\partial z}-\frac{\partial \Phi_{1}}{\partial z}\right]_{z=-0}=\sigma_{1}(r), \quad\left[(1-2 v) F_{1}-\Phi_{1}\right]_{z=-0}=S_{1}(r)+c h \quad(r<a)} \\
& S(r)=\int_{a}^{r}\left[\tau_{1}(r)-\tau_{2}(r)\right] d r, \quad S_{1}(r)=\int_{0}^{r} \tau_{1}(r) d r \tag{1.8}\\
& \left.F_{1}\right|_{z=0}=\left.F_{2}\right|_{z=0},\left.\quad \frac{\partial F_{1}}{\partial z}\right|_{z=0}=\left.\frac{\partial F_{2}}{\partial z}\right|_{z=0} \quad(r>a) \tag{1.9}\\
& \left.\int_{0}^{a} \frac{\partial \Phi_{1}}{\partial z}\right|_{z=0} r d r=\left.\int_{0}^{a} \frac{\partial \Phi_{2}}{\partial z}\right|_{z=0} r d r \tag{1.10}
\end{align*}
$$

The relations (1.9), (1.10) guarantee the continuity of the displacements on the plane $z=0$ at $r>a$ (cf. [2], page 41), and (1.10) allows, in addition, the determination of the constant c.

Therefore, the formulated problem is reduced to the determination of four functions $F_{1}, \Phi_{1}, F_{2}, \Phi_{2}$, that are harmonic in the region $-h<z<0$ and $0<z<\infty$, respectively, and satisfying conditions (1.4), (1.10), and also the requirements at infinity, which ensure proper behavior of displacements and stresses.

The unknown functions are sought in the form of the following integral equations:

$$
\begin{aligned}
& F_{1}=\int_{0}^{\infty}[A \cosh \lambda(h+z)+B \sinh \lambda(h+z)] J_{0}(\lambda r) \frac{d \lambda}{\sinh \lambda h}, \quad F_{2}=\int_{0}^{\infty} E e^{-\lambda z} J_{0}(\lambda r) d \lambda \\
& \Phi_{1}=\int_{0}^{\infty}[C \cosh \lambda(h+z)+D \sinh \lambda(h+z)] J_{0}(\lambda r) \frac{d \lambda}{\sinh \lambda h}, \quad \Phi_{2}=\int_{0}^{\infty} F e^{-\lambda z} J_{0}(\lambda r) d \lambda
\end{aligned}
$$

Conditions (1.4) and (1.5) allow one to obtain the two relations

$$
\begin{equation*}
D=2(1-v) B+\mu A-\sigma_{0}^{\circ}, \quad C=(1-2 v) A+\mu B-\mu S_{0}^{\circ} \tag{1.12}
\end{equation*}
$$

Here

$$
\begin{equation*}
\sigma_{0}=\int_{0}^{\infty} \sigma_{0}(r) J_{0}(\lambda r) r d r, \quad S_{0}=\frac{1}{h} \int_{0}^{\infty} S_{0}(r) J_{0}(\lambda r) r d r, \quad \mu=\lambda h \tag{1.13}
\end{equation*}
$$

Analogously, from (1.6) and (1.7) we find

$$
\begin{gather*}
2(1-v)(A+B \operatorname{coth} \mu)-(C+D \operatorname{coth} \mu)-F+2(1-v) E=\sigma^{\circ} \\
(1-2 v)(A \operatorname{coth} \mu+B)-\left(C \operatorname{coth} \mu+^{\circ} D\right)+F-(1-2 v) E=\mu S^{\circ} \\
\sigma^{\circ}=\int_{0}^{\infty} \sigma(r) J_{0}(\lambda r) r d r, \quad S^{\circ}=\frac{1}{h} \int_{n}^{a} S(r) J_{0}(\lambda r) r d r \tag{1.14}
\end{gather*}
$$

Relations (1.12) and (1.14) allow one to express all desired values by
means of two functions of a parameter λ, in which case $1 i$ is convenient to use the following:

$$
\begin{equation*}
M=A+B \operatorname{coth} \mu+E, \quad N=A \operatorname{coth} \mu+B-E \tag{1.15}
\end{equation*}
$$

Then, after some transformations, the remaining conditions (1.8) and (1.9) are reduced to the following system of dual integral equations:

$$
\begin{equation*}
\int_{0}^{\infty} M J_{0}(\lambda r) \mid \lambda d \lambda=0, \quad \int_{0}^{\infty} N J_{0}(\lambda r) d \lambda=0 \quad(r>a) \tag{1.16}
\end{equation*}
$$

$$
\begin{equation*}
\int_{0}^{\infty}\left[\frac{N}{2}-\left(\frac{1}{2}+\mu+\mu^{2}\right) e^{-2 \mu} N-\mu^{2} e^{-2 \mu} M\right] J_{0}(\lambda r) \lambda d \lambda=f_{1}(r) \quad(r<a) \tag{1.17}
\end{equation*}
$$

$$
\begin{equation*}
\int_{0}^{\infty}\left[-\frac{M}{2}+\left(\frac{1}{2}-\mu+\mu^{2}\right) e^{-2 \mu} M+\mu^{2} e^{-2 \mu} N\right] J_{0}(\lambda r) d \lambda=f_{2}(r) \quad(r<a) \tag{1.18}
\end{equation*}
$$

$$
\begin{aligned}
& f_{1}=\sigma_{1}-\int_{0}^{\infty}\left\{(\bar{\sigma}+\mu \bar{S}) \frac{1+\mu-\mu \operatorname{coth} \mu}{1+\operatorname{coth} \mu}+(\operatorname{coth} \mu-1)\left[(1+\mu) \bar{\sigma}_{0}+\mu \bar{S}_{0}\right]\right\} \lambda J_{0}(\lambda r) d \lambda \\
& f_{2}=S_{1}+\cosh -\int_{0}^{\infty}\left\{(\bar{\sigma}+\mu \bar{S}) \frac{1-\mu+\mu \operatorname{coth} \mu}{1+\operatorname{coth} \mu}+\mu(\operatorname{coth} \mu-1)\left[(1-\mu) \bar{S}_{0}+\bar{\sigma}_{0}\right]\right\} J_{0}(\lambda r) d \lambda
\end{aligned}
$$

We note also that relation (1.10) may not be represented in the form

$$
\begin{equation*}
\int_{0}^{\infty} M(\lambda) J_{1}(\lambda a) d \lambda=0 \tag{1.19}
\end{equation*}
$$

2. Roduotion of dual equation to Fradholm integral quatione. If we introduce new unknown functions Φ and ψ by the relations

$$
\begin{equation*}
M(\lambda)=h \int_{0}^{a} \varphi(t) \cos \lambda t d t, \quad N(\lambda)=\frac{1}{\lambda} \int_{0}^{a} \varphi(t)(\cos \lambda t-\cos \lambda a) d t \tag{2.1}
\end{equation*}
$$

then with the aid of Formula [3]

$$
\begin{equation*}
\int_{0}^{\infty} J_{0}(\lambda r) \sin \lambda t d \lambda=0 \quad(0 \leqslant t<r) \tag{2.2}
\end{equation*}
$$

we can establish that Equations (1.16) are saitisfied identically.
Further, if we substitute (2.1) in (1.17), we find the following equations at $r<a$:

$$
\begin{gather*}
\frac{1}{2} \int_{0}^{a} \varphi(t) d t \int_{0}^{\infty} J_{0}(\lambda r)(\cos \lambda t-\cos \lambda a) d \lambda-\int_{0}^{a} \varphi(t) d t \int_{0}^{\infty} h_{1}(\lambda)(\cos \lambda t- \\
-\cos \lambda a) J_{0}(\lambda r) d \lambda-\int_{0}^{a} \psi(t) d t \int_{0}^{\infty} g_{1}(\lambda) \cos \lambda t J_{0}(\lambda r) d \lambda=f_{1}(r) \tag{2.3}\\
-\frac{1}{2} \int_{0}^{a} \varphi(t) d t \int_{0}^{\infty} J_{0}(\lambda r) \cos \lambda t d \lambda+\int_{0}^{a} \varphi(t) d t \int_{0}^{\infty} g_{2}(\lambda) \cos \lambda t J_{0}(\lambda r) d \lambda+ \\
+\int_{0}^{a} \varphi(t) d t \int_{0}^{\infty} h_{2}(\lambda)(\cos \lambda t-\cos \lambda a) J_{0}(\lambda r) d \lambda=f_{2}(r)
\end{gather*}
$$

Here
$h_{1}=\left(1 / 2+\mu+\mu^{2}\right) e^{-2 \mu}, \quad g_{1}=\mu^{3} e^{-2 \mu}, \quad h_{2}=\mu e^{-2 \mu}, \quad g 2=\left(1,2-\mu+\mu^{2}\right) e^{-2 \mu}$
With the ald of Formula [3]

$$
\begin{gather*}
\int_{0}^{\infty} J_{0}(\lambda r) \cos \lambda t d \lambda= \begin{cases}0 & (r<t) \\
\left(r^{2}-t^{2}\right)^{-1 / 2} & (r>t)\end{cases} \tag{2.6}\\
J_{0}(\lambda r)=\frac{2}{\pi} \int_{0}^{1 / 2 \pi} \cos (\lambda r \sin \theta) d \theta \tag{2.7}
\end{gather*}
$$

relations (2.3) and (2.4) may be reduced to Schlömilch's integral equations $\int_{0}^{\pi / 2 \pi}\left\{\varphi(r \sin \theta)-\frac{2}{\pi} \int_{0}^{a} \varphi(t)\left[H_{1}(t+r \sin \theta)+H_{1}(t-r \sin \theta)-H_{1}(a+r \sin \theta)-\right.\right.$ $\left.\left.-H_{1}(a-r \sin \theta)\right] d t-\frac{2}{\pi} \int_{0}^{a} \psi(t)\left[G_{1}(t+r \sin \theta)+G_{1}(t-r \sin \theta)\right] d t\right\} d \theta=2 f_{1}(r)$
$\int_{0}^{1 / 8 \pi}\left\{\psi(r \sin \theta)-\frac{2}{\pi} \int_{0}^{a} \psi(t)\left[G_{2}(t+r \sin \theta)+G_{2}(t-r \sin \theta)\right] d t-\frac{2}{\pi} \int_{0}^{a} \varphi(t)\left[H_{2}(t+\right.\right.$ $\left.\left.+r \sin \theta)+H_{2}(t-r \sin \theta)-H_{2}(a+r \sin \theta)-H_{2}(a-r \sin \theta)\right] d t\right\} d \theta=-2 f_{2}(r)$
where

$$
\begin{equation*}
H_{1,2}(x)=\int_{0}^{\infty} h_{1,2}(\lambda) \cos \lambda x d \lambda, \quad G_{1,2}(x)=\int_{0}^{\infty} g_{i, 2}(\lambda) \cos \lambda x d \lambda \tag{2.10}
\end{equation*}
$$

After calculation we obtain

$$
\begin{align*}
& H_{1}=4 h^{3} \frac{12 h^{2}-x^{2}}{\left(4 h^{2}+x^{2}\right)^{8}}, \quad G_{1}=G h^{3} \frac{16 h^{4}-24 x^{4} h^{2}+x^{4}}{\left(4 h^{2}+x^{2}\right)^{4}} \tag{2.14}\\
& H_{2}=h \frac{4 h^{2}-x^{2}}{\left(4 h^{2}+x^{2}\right)^{3}} \quad G_{2}=2 h \frac{8 h^{4}-2 h^{2} x^{2}+x^{4}}{\left(4 h^{3}+x^{8}\right)^{3}}
\end{align*}
$$

Solving Equations (2.8) and (2.9), we arrive at a system of Fredholm integral equations

$$
\begin{align*}
& \varphi(x)-\frac{2}{\pi} \int_{0}^{a} \varphi(t) K_{1}(x, t) d t-\frac{2}{\pi} \int_{0}^{a} \varphi(t) L_{1}(x, t) d t= \\
& =\frac{4}{\pi}\left[f_{1}(0)+x \int_{0}^{1 / x^{\pi}} f_{1}^{\prime}(x \sin \theta) d \theta\right] \quad(0<x<a) \tag{2.12}\\
& \varphi(x)-\frac{2}{\pi} \int_{0}^{a} \psi(t) L_{2}(x, t) d t-\frac{2}{\pi} \int_{0}^{a} \varphi(t) K_{2}(x, t) d t= \\
& \tag{2.13}\\
& =-\frac{4}{\pi}\left[f_{2}(0)+x \int_{0}^{1 / 2 \pi} f_{2}^{\prime}(x \sin \theta) d \theta\right] \quad \quad(0<x<a)
\end{align*}
$$

the kernels of which are glven by Equations

$$
\begin{align*}
& K_{1}(x, t)=H_{1}(t+x)+H_{1}(t-x)-H_{1}(a+x)-H_{1}(a-x) \\
& L_{1}(x, t)=G_{1}(t+x)+G_{1}(t-x) \tag{2.14}\\
& K_{2}(x, t)=H_{2}(t+x)+H_{2}(t-x)-H_{2}(a+x)-H_{2}(a-x) \\
& L_{2}(x, t)=G_{2}(t+x)+G_{2}(t-x) \\
& \text { Condition }(1.29) \text { may be reduced to the form }
\end{align*}
$$

$$
\begin{equation*}
\int_{4}^{a} \psi(t) d t=0 \tag{2.15}
\end{equation*}
$$

Thus, the solution to the problem set 1 s given by Equations (1.11), (1.12), (1.14),(1.15),(2.1),(2.12),(2.13).
3. Som numarioal rosulte. We now turn to the special case, where the boundary of the half-space is free of stress, and to the edges of the crack are applied a uniform normal stress of intensity q. At the same time $\sigma_{0}=\tau_{0}=\tau_{1}=\tau_{2}=0, \quad \sigma_{1}=\sigma_{2}=-q, \quad$ from which

$$
\begin{equation*}
f_{1}(r)=-g, \quad f_{2}(r)=c \tag{3.1}
\end{equation*}
$$

Introducine the dimensionless variables

$$
\begin{equation*}
x / a=\xi, \quad t / a=\tau \tag{3.2}
\end{equation*}
$$

$$
\Phi(x)=-\frac{4}{\pi}\left[q \chi_{1}(\xi)+c \chi_{2}(\xi)\right], \quad \psi(x)=-\frac{4}{\pi}\left[q \omega_{1}(\xi)+c \omega_{2}(\xi)\right]
$$

We reduce the problem to the solution of two systems of Fredholm integral equations

$$
\begin{align*}
& \chi_{1}(\xi)=1+\int_{0}^{1} M_{1}(\xi, \tau) \chi_{1}(\tau) d \tau+\int_{0}^{1} N_{1}(\xi, \tau) \omega_{1}(\tau) d \tau \\
& \omega_{1}(\xi)=\int_{0}^{1} N_{2}(\xi, \tau) \omega_{1}(\tau) d \tau+\int_{0}^{1} M_{2}(\xi, \tau) \chi_{1}(\tau) d \tau \tag{3.3}\\
& \chi_{2}(\xi)=\int_{0}^{1} M_{1}(\xi, \tau) \chi_{2}(\tau) d \tau+\int_{0}^{1} N_{1}(\xi, \tau) \omega_{2}(\tau) d \tau \\
& \omega_{2}(\xi)=1+\int_{0}^{1} N_{2}(\xi, \tau) \omega_{2}(\tau) d \tau+\int_{0}^{1} M_{2}(\xi, \tau) \chi_{2}(\tau) d \tau \tag{3.4}
\end{align*}
$$

In relations (3.3) and (3.4) we introduce the notation
and put

$$
\begin{gather*}
M_{1}=\frac{8 \beta^{3}}{\pi}\left[S_{1}(\tau+\xi)+S_{1}(\tau-\xi)-S_{1}(1+\xi)-S_{1}(1-\xi)\right] \\
N_{1}=\frac{123^{3}}{\pi}\left[R_{1}(\tau+\xi)+R_{1}(\tau-\xi)\right] \tag{3.5}\\
M_{2}=\frac{2 \beta}{\pi}\left[S_{2}(\tau+\xi)+S_{2}(\tau-\xi)-S_{2}(1+\xi)-S_{2}(1-\xi)\right] \\
N_{2}=\frac{43}{\pi}\left[R_{2}(\tau+\xi)+R_{2}(\tau-\xi)\right] \\
S_{1}(u)=\frac{123^{2}-u^{2}}{\left(43^{2}+u^{2}\right)^{3}}, \quad R_{1}(u)=\frac{163^{2}-243^{2} u^{2}+u^{4}}{\left(43^{2}+u^{2}\right)^{4}} \tag{3.6}\\
S_{2}(u)=\frac{43^{2}-u^{2}}{\left(43^{2}+u^{2}\right)^{2}}, \quad R_{2}(u)=\frac{83^{4}-2 \beta^{2} u^{2}+u^{4}}{\left(4 \beta^{2}+u^{2}\right)^{3}}
\end{gather*}
$$

$$
\begin{equation*}
\beta=h / a \tag{3.7}
\end{equation*}
$$

Equation (2.1j) gives the foilowing expression for the value c :

$$
\begin{equation*}
c=-q\left(\int_{0}^{1} \omega_{1}(\tau) d \tau\right)\left(\int_{0}^{1} \omega_{2}(\tau) d \tau\right)^{-1} \tag{3.8}
\end{equation*}
$$

By means of substitution of the system (3.3), (3.4) by the algebra1c system, an approximate solution in the trapezoldal formula was obtained, where the interval of integration was partitioned into ten parts. Results of the calculation for two values of the parameter 8 are shown in the following table.

$\beta=1 / 2$					$\beta=1$			
ξ	x_{1}	ω_{1}	x,	ω_{2}	x_{1}	$\omega_{\text {t }}$	$x=$	ω_{2}
0	4.49	1.54	0.682	1.81	1.50	0.187	0.462	1.40
0.1	4.37	1.49	0.663	1.80	1.49	0.184	0.457	1.40
0.2	4.07	1.38	0.612	1.77	1.46	0.176	0.440	1.40
0.3	3.61	1.20	0.541	1.73	1.42	0.164	0.412	1.39
0.4	2.95	0.968	0.440	1.70	1.37	0.148	0.375	1.37
0.5	2.21	0.695	0.338	1.65	1.30	0.129	0.329	1.37
0.6	1.46	0.415	0.212	1.60	1.23	0.108	0.277	1.34
0.7	0.729	0.133	0.125	1.54	1.16	0.0851	0.220	1.32
0.8	0.0420	-0.111	-0.024	1.47	1.08	0.0623	0.160	1.30
0.9	-0.463	-0.323	-0.139	1.42	1.01	0.0403	0.0997	1.27
,	-0.800	-0.446	-0.262	1.36	0.954	0.0199	0.0109	1.25

It is 1mportant to note that certain characteristics of the stress-deformation state may be expressed immediately by means of functions $x_{1}, 2$ and $\omega_{1,2}$. In particular, an asymptotic expression for formal stresses in the piane $z=0$ as $r-+a$ is

$$
\begin{equation*}
\sigma_{0}=-\frac{1}{2 \sqrt{r^{2}-a^{2}}} \int_{0}^{a} \varphi(t) d t+O(1) \tag{3.9}
\end{equation*}
$$

Referring this quantity to its value σ_{0}^{∞} in the limiting case $h \rightarrow \infty$, corresponding to a crack in an unlimited body [4], we find

$$
\begin{gather*}
\frac{\sigma_{0}}{\sigma_{0}^{\infty}}=\gamma+o\left(\frac{r^{2}}{a^{2}}-1\right)^{1 / 2} \tag{3.10}\\
\gamma=\int_{0}^{1} \chi_{1}(\xi) d \xi-\left(\int_{0}^{1} \omega_{1}(\xi) d \xi\right)\left(\int_{0}^{1} \omega_{2}(\xi) d \xi\right)^{-1}\left(\int_{0}^{1} \chi_{2}(\xi) d \xi\right) \tag{3.11}
\end{gather*}
$$

The values of the coefficient γ, characterizing the degree of increase of stress concentration connected with the presence of free boundary of the half-space, turn out to be the following:

$$
\gamma=2.19 \quad \text { for } \quad \beta=1 / 2, \quad \gamma=1.27 \quad \text { for } \quad \beta=1
$$

For obtaining the approximate solution to the problem under consideration for large values of h / a, the method of expansion in a series of the small parameter $\alpha=a / h$ may be applied.

After performing the corresponding calculations the following expressions for the basic unknown functions may be obtained:

$$
\begin{gather*}
\varphi(x)=-\frac{4 q}{\pi}\left[1+\frac{5}{3 \pi} \alpha^{3}-\frac{21}{20 \pi}\left(1+5 \xi^{2}\right) x^{5}+O\left(\alpha^{7}\right)\right] \\
\psi(x)=-\frac{16 q}{3 \pi}\left[\frac{5}{1 \theta \pi}\left(1-3 \xi^{2}\right) x^{5}+O\left(x^{7}\right)\right] \tag{3.12}
\end{gather*}
$$

The coefficient y may be calculated by Equation

$$
\begin{equation*}
\gamma-1+\frac{5}{3 \pi} \alpha^{3}-\frac{14}{5 \pi} \alpha^{5}+O\left(\alpha^{7}\right) \tag{3.13}
\end{equation*}
$$

which for $\alpha=$ and $a=\frac{1}{3}$ gives $y=1.04$ and $\gamma=1.02$, respectively; so that for $h / a \approx 2-3$ the presence of a free boundary has practically no effect on the stress concentration factor.

The method of expansion in a small parameter mey also be applied in the problem of deformation of an unbounded body weakened by two plane circular cracks (cf. paper [2]). In this case for the coefficient y we obtain the following formula:

$$
\begin{equation*}
\gamma=1-\frac{2}{3 \pi} \alpha^{3}+\frac{4}{5 \pi} \alpha^{5}+O\left(\alpha^{7}\right) \tag{3.14}
\end{equation*}
$$

It obviously shows that there occurs a reduction of the stress concentration in a comparison with the case of a single crack.

In conclusion we will point out that the method developed in the present paper may also be applied to the case where the boundary of the half-space is rigidiy clamped. For this, in place of the first two conditions (1.3) we should assume

$$
\begin{equation*}
\left.u_{z}\right|_{z=--h}=\left.u_{r}\right|_{z=-h}=0 \tag{3.15}
\end{equation*}
$$

The presence of the latter condition necessitates finding the function \propto in place of the function (cf. (1.1)). This somewhat complicates the calculations, however the problem, as before, may be reduced to the system of regular Fredholm equations. One must note that in contrast to the case of a free boundary or two cracks, for a fixed boundary both the kernel of the Fredholm equations and the other characteristics (for example the coefficient y cf. (3.10)) turn out to be dependent on Poisson's ratio v. We only mention here the equation for γ in the form of an expansion in powers of α

$$
\begin{equation*}
r=1-\frac{x^{2}+19}{12 \pi x} \alpha^{2}+\frac{x^{2}+41}{15 \pi x} \alpha^{5}+o\left(\alpha^{7}\right) \quad(x=3-4 v) \tag{3.16}
\end{equation*}
$$

For $v=\frac{1}{3}, \alpha=\frac{1}{6}$ we find $\gamma=0.97$.

BIBLIOGRAPHY

1. Ufliand, Ia.S., Integral'nye preobrazovanila v zadachakh teoril uprugosti (Integral Transforms in Problems of Theory of Elasticity). Izd.Akad. Nauk SSSR, 1963.
2. Lebedev, N.N. and Ufliand, Ia.S., Prostranstvennala zadacha teori1 uprugosti dila neogranichennogo tela, oslablennogo dvumia ploskimi kruglymi shoheliami (Contact problem in the theory of elasticity for an infinite body, weakened by two plane circular cracks). Trudy L.P.I., Vol. 210 , p.39, 1960.
3. Watson, G.N., Teorila besselevykh funktsil (Theory of Bessel Functions). (Russian transiation). Izd.Inostr. Lit., 1949, (Cambridge University Press).
4. Sneddon, I., Preobrazovaniia Fur'e (Pourier Transforms). Izd.inostr.Lit. 1955, (McGraw-H111 Publ.).
5. Lebedev, N.N. and Ufliand, Ia.S., Osesimmetrichnaia kontaktnaia zadacha dila uprugogo sloia (Axisymmetric contact problem for an elastic layer) PNM Vol. 22, No 3, 1958.
