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The elastic equlllbrlun of a half-space, containing a circular crack, situ- 
ated in a plane parallel to the boundary (Flg.1) Is Investigated. In the 
case of an axlsymmetrlc load the problem is reduced to a system of dual inte- 
gral equations, and then to a system of regular Fredholm equations. Some 
numerical results are Gbtaincd which are related to the stress concentration 
at the axial tension. 

1. Forrnulrtlon oi problem and ltr srduotlon to I ryrtrm of dual integral 
l quatlonr . We represent elastic displacements In the axlsymmetric case by 
two harmonic functions of Papkovlch-Neuber, 
form (cf. for example [l]): 

@ and F , In the following 

acp ar, 
2&A,= - ar -_z F, 2cu, =(3 - 4Y)F - @ - z -$-, 

acp ul == x (Li) 

In order to formulate the boundary conditions for the posed problem, we 
express by means of the functions introduced, the normal ii, -,:,d tangential 
7,, stresses 

i3F &B 
SL = 2 (1 - 4 x 

SF -- & - = T * Trz =$ (i-2v)F-CD-z- 
I I (W 

Let us divide the body in two domains (Flg.1): (1) layer - ?t < t < 0 and 
(2) half-space 0 c t < m and give functions a 

zl 
and Q In these domains the index 1 and 2. If we 

121 
assume that the stresses on the surface of the 

& F 
crack and on the boundary of the body are specified, 
the boundary conditions may be written In the form --- --W 

(II h ; az 1 z=-_h = 60 (r)* z,, ( r=--h = To (r) 

b, ( z__-p = a1 (r), Q, 1 z=+lJ = 62 (r) (r < 4 (1.3) 

Fig. 1 T,,I z=_-. = TI (rh z,, ( z=+o / = z2 (r) 

In addition, to pass through plane I = 0 at F > a the values of the 
displacements and stress should be continuous. Then the'lndlcated conditions 
are expressed by means of the functions Fl 2 0 1, F=, Q2 In the following way: 

1330 
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(I - 2v) F1 - @l $ll%] z=_,, = So (r) = $ to (r) dr 
cm 

(1.4) 

(1.5) 

[ 
2(1-v)$- $1 z=. - [2 (1 - v) -% - $1 ZZO ={:(r)_‘5:($_t*(r)(~~:~ 

((1 - 2v) Fl - @l]z=o- [(I - 2v)Fz_ @'2]I;=o= 
0 (r > a) 

S (4 (r<a) 

(1.7) 

[ 
aa 

2(i-V)$&~ 1 z=-0 
= 61 (r), [(I - 2~) FI - @l],=_,=Sl(r)+ch (r<a) 

S(r)= f [Ti(r)--tz(r)]dr, 

r (1.8) 
SI (r) = 

s 
~1 (r) dr 

a 0 

F1 I z=O = Fa 1 Z=O, 

aF1 aF2 

a2 .?=O =az .7=O (r > a) (I.91 

r dr 
z=o 

(1.10) 

The relations (l.g), (1.10) guarantee the continuity of the displacements 
on the plane z = 0 at r > c (cf. c23, page 41), and (1.10) allows, In 
addition, the determination of the constant c . 

Therefore, the formulated problem is reduced to the determination of four 
functions FI, %, Fa, en, that are harmonic In the region - h < z < 0 and 
o<z<m, respectively, and satisfying conditions (1.4), (l.lO), and also 
the requirements at Infinity, which ensure proper behavior of displacements 
and stresses. 

The unknown functions are sought In the form of the following Integral 
equations: 

FI = 5 [Accwhh (h + z) + B *nhh (h+z)]Jo(hr\s$h, 

03 

F2 = 
s 

Ee-” J, (hr) dJ. 

0 0 

Ub = 5 [CcoshS (h + z) + Ddh (h + z)] Jo (ir)ti%h, 02 = O3 Femhz Jo (Sr) dI. 
s 

0 0 
(Ml) 

Conditions (1.4) and (1.5) allow on6 to obtain the two relations 

D=2(1 - v) B + pA - q,“, C = (1 - 2v) A + pB - /.L&,” (1.12) 

Here 
03 

co = 
s 
co (r) J0 (W rdr, S, = +f&(r) J,, (hr) rdr, p = Ah (1.13) 

Analogously: from (1.6) and (1.7) 
0 

we find 

2 (1 - v) (A + B ~0th p) - (C + D ~0th p) - F + 2 (1 - v) E = a0 

(1 -2v)(Acoth~+B)-(CEot++-D)+F-((1-2v)E=@” 
03 

If = 
s 

o (r) Jo (hr) rdr, 
la S” = _ 
h s 

S (r) J,, (hr) rdr (1.14) 

0 r) 

Relations (1.12) and (1.14) allow one to express all desired values by 
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means of two functions of a parameter X , in which case 1:. 1s convenient to 
use the following: 

M=A +Brmthp -f-E, N=Acothp+-B-E (1.15) 

Then, after some transformations, the remaining conditions (1.8) and (1.9) 
are reduced to the folIowIng system of dual integral equations: 

m M 

s 
~~~(~F)~~~~ = 0, 

s 
iv.Te (k,t)dA = 0 (r>s) (1.16) 

0 0 

7 [+ _ (f + p + p2) e-3p iV - p2e-2pM ] Jo (hr) hdh = jl (r) (r < a) (1.17) 
0 
00 

U 0 
-~+~$-~+p~)e~z~~+p~e~z~N]J~(hl)dh=~fl(r) (r<aB) 

We note also that relation (1.10) may not be represented In the form 
co 

s 
M (h)Jx (ha)dli = 0 (1.19) 

0 

P. Roduotlon of dual rqu8tionm to Brrdholm Intrg?&l riawtlonr. If we 
Introduce new unknown functions g, and e by the relations 

.M (h) = ~~~(~) cos J&B, N fh) =+-f cp (~)(COS~~ - cos 7ia)dt (2.1) 

0 6 

then with the aid of Formula [3] 
00 

s 
J, (hr)sin ktdl, = 0 (0 < t < f) (24 

0 

we can establish that Equations (1.16) are satisfied identically. 

Further, If we substitute (2.1) in (1.17), we find the fo.lI.owlng equa- 
tions at r < a : 

~~~(~)dt ~~~iiri(‘uaki-cra.io)d~-~~(t)dt ~~~~~~~c~~~t- 

0 0 

- cos ha) J, (hr)dh --_I$@) dliSsl(h)coshtJ,(hr)dh= k(r) (2.3) 

0 0 

Jo (at) cos htdX + gz (h) eos htJo (kt) dh $ 
0 0 

(2.4) 
0 0 
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Here 

h = (‘1s $ p + pz) em@‘, g1 = pse-*P, hz = peezp, gr = (‘.‘z - p + P)e-“” (2.5) 

With the aid of Formula [3] 
co 

s J, (hr) cos htdh = * (r < t) 
0 (r 2 - tq-“2 (r > f) 

relations (2.3) and (2.4) may be reduced to Schl~mllch's integral equations 
rltn a 

SI cp (r sin 8) --$ 
s 

cp (1) [HI (t + r sin 0) + HI (t - r sin 0) - HI (a + r sin 0) - 

0 0 
a 

c- ffl (a - r sin e)] dt - -;i; 2 \ 4~ (4 I’& ft + t sin 8) + G1 (t - r sin 8)l dt de = 2fl(r) 
* 
0 

(2-3) 
y*= a a 

SI 3.p (r sin e)- $ 
s 

II, (t) [C, (t + r sin 0) + C2 (t - r sin @)I dt - $ \ cp(t) IHs (t+ 

0 0 0 

+ rsinO)+ HI,@--rsinO)-H2(a+rsinO)-Hz(a - r sin e)] dt} do=--2!%(r) (2.9) 

where 
03 

HI,% (4 = 
s 
hl,2(h) cos hzdh, &,a (~1 = 3 &.a (A) (!f@ hd’u (2.10) 

0 0 

After calculation we obtain 

Solving Equations (2.8) and (2.g), 
gral equations 

We arrive at a system of Fredholm inte- 

(f (I 

cp (4 - + 
1; 
v (t) Kl tx, t) dt -y 2 \ $J (t) Lx (5, t)dt = 

0 0 

", [II (0) +r "rjC (x sin 0) de] c=- 
(0 < 3 < a) (2.12), 

0 

“, [h (0) + a~*‘! f~’ (x sin e) de] N.--- 

((0 < 2 < q (2.13) 
0 

the kernels of which are given by Equations 
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K, (XT t) = H, (t + x) + H, (t - x) - H, (a + x) - HI (a - x) 
L, (5, t) = c, (t + 2) + c, (t - I) (2.143 
Zh(+)=ZZ,(t+r)+ZZ,(t--)-HH,(a+z)-H&-z) 
ZJ, (2, t) = G, (C + I) + G, (t - x) 

Condition (1.19) may bc reduced to the form 
n 

s 1p (C) dC = 0 (2.15). 

Thus the solution to the problem set is given by Equations (1.11),(1.12), 
(1.14),~1.15),(2.1),(2.12),(2.13). 

3. 801110 numarioal rmrultm. We now turn to the special case, where the 
boundary of the half-space is free of stress, and to the edges of the crack 
are applied a uniform normal stress of intensity Q . At the same time 
u(=7)=71=Tz=0,. cJI=u2=-q,. from which 

fl (I) = -9, 12 (4 = c (3.1) 

Introducing the dimensionless variables 

Xld=$, t/a = z 

P k) = - f 19x1 (E) + CXa WI, 

(3.2) 

ljl (z) = - f IWQ (E) + cm @I 

we reduce the problem to the solutlon of two systems of Fredholm integral 
equatlons 

x1 (E) = 1 + jMl (49 z) XI(T) dr+ { N1 (5, T) 01(r)& 

0 0 

1 

01 (5) = fN% 6 7) 01 6) df + 1 Ma (6, T) XI (r) dz 
0 0 

1 

s 1 

x1 (E) = Ml 6 r) xa (t) t-h f 
s 

NI (k Z) 6.h (T) dr 
0 0 

In relations (3.3) and (3.4) we Introduce the notation 

and put 

Ml = T [Sl (t + EJ + Sl (t - 5) - Sl (1 + 5) - s1 (l--4)11 

N1 = $f [Rl (z + E) + RI (t - E)l 

M2 z!!!z z [Sz (t + 5) + sz (t - 4) - sz (1 + El - 82 (1 - 5)1, 

43 
Nz = y[&(t + 4) + &(T-- E)l 

1232 - U2 1634 - 2432u2 + u4 
81 (U) = (432 + u2)3 ' R1 t") = - (4~2 + u2)4 

432 - uz 
Sz (u) = (432 + $)2 9 Rz (u) = 

Elfi" - 2fiW + UQ 

(482 + u2Y 

p=hfa 

(3-3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 



Equation (2.15) 31~s the foilowing expression for the value c : 
I 1 -1 

c=-q (S 0-h (r) dt HS 02 (T) (IT 1 
0 I, 

I335 

(3.8) 

By means of substitution of the system (3.3), (3.4) by the algebraic sys- 
tem, an approximate solution In the trapezoidal formula was obtained, where 
the Interval of Integration was partitioned Into ten parts. Results of the 
calculation for two values of the parameter 8 are shown In the following 
table. 

I - Xl 

-- 
x2 

1.54 0.682 1.81 I.50 u.187 
1.49 0.663 1.80 1.49 0.184 
1.38 0.612 1.77 1.4ti 0.176 
1.20 0.541 1.73 1.42 o.i(i4 
0.968 0.440 1.70 1.37 0.148 
0.695 0.338 1.65 1.30 0.129 
0.415 0.212 1.60 1.23 O.lU8 
0.133 0.125 

E 
1.16 0.0851 

0.0420 -0.111 -0.024 
1142 

1.08 O.Ofj23 
-0.463 -0.323 I -0.139 1.01 0.0403 
-0.800 1 -0.446 1 -0.262 1.36 0.954 0.0199 

It Is Important to note that certain characteristics of the stress-defor- 
mation state may be expressed Immediately by means of functions Xl.2 and 
eJ1.2 * In particular, an asymptotic expression for formal stresses in the 
plane z-0 as r-+a Is n 

4.49 
4.37 
4.07 
3.61 
2.95 
2.21 
1.46 
0.729 

0.402 
0.457 
u.440 
0.412 
0.375 
0.3L9 
0.277 
0.220 
0.160 
0.0997 
0.0199 

% 

1.40 
1.40 
1.40 
1.39 
1.37 
1.37 
1.34 
1.32 
1.30 
1.27 
1.25 

1 - 
‘O = - 2 ,rra _ a2 o cp (t) dt + 0 (1) s (3.9) 

Referring this quantity to Its value oc" In the llmltlng case h - 0 , 
corresponding to a crack In an unlimited body [4], we find 

(3.10) 

1 1 

r= s 1 1 

x1 (5) dj - 
0 

iS w Cd dE aa (4) dt -’ XI (F) dS 
0 

HS 
0 

1 (S 
I, 1 (3.11) 

The values of the coefficient v , characterizing the degree of Increase 
of stress concentration connected with the presence of free boundary of the 
half-space, turn out to be the following: 

r = 2.19 for p = l/2, 7 = 1.27 for p = 1 

For obtaining the ap roxlmate 
for large values of hL 

solution to the problem under consideration 

parameter 
the method of expansion In a series of the small 

a = a/h may bk applied. 

for 
After performing the corresponding calculations the following expressions 
the basic unknown functions may be obtained: 

cp (5) = - + [I + g- 
a3 - 

21 2ux (1 + 5E2) Z5 + 0 (a') 1 
$ (2) = - q$- Ll& (1 - 3E2) 35 + 0 (z?) 1 (3.12) 

The coefficient y may be calculated by Equation 
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1 
5 

+ 33 
14 

y = 3~ - -%; uj + 0 (~7) (3.13) 

which for a = & and 0 = j 
so that for da cJ 2 

gives y = 1.04 and y - 1.02 , respectively; 
- 3 the presence of a free boundary has practically no 

effect on the stress concentration factor. 

The method of expansion In a small parameter m&y also be applied In the 
problem of deformation of an unbounded body weakened by two plane circular 
cracks (cf. paper t23). 
following formula: 

In this case for the coefficient y we obtain the 

r = 1 - g- ct3 + g- Lx5 + O(a7) 

It obviously shows that there occurs a reduction of the stress concentration 
in a comparison with the case of a single crack. 

In conclusion we will point out that the method developed in the present 
paper may also be applied to the case where the boundary of the half-space 
is rigidly clamped. For this, in place of the first two conditions (1.3) we 
should assume 

%izzx_h = url,:,_h = 0 (3.15) 

The presence of the latter condition necessitates finding the function e 
In place of the function d, (cf. (1.1)). This somewhat complicates the 
calculations, however the problem, as before, may be reduced to the system 
of regular Fredholm equations. One must note that in contrast to the case 
of a free boundary or two cracks,for a fixed boundary both the kernel of the 
Fredholm equations and the other characteristics (for example the coefficient 
Y cf. (3.10)) turn out to be dependent on Poisson's ratio v . We only 
mention here the equation for y In the form of an expansion in powers of a 

x2 + 19 
T=1-_U3$- 

x2 -f- 41 
15nx c@ + 0 f@ (x = 3 - 4v) (3.16) 

Par v I $ , a - 4 we find y - 0.97 . 
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